Load Diagrams
Program 0170 Rubber Buffers
Calculation Example

1. Calculation of energy per buffer: \(W = \frac{1}{2} m \times v^2 \)
2. Readout compression length from the diagram
3. Readout final load of the buffer from the table
4. Result and verification
 - \(s < 0.5 \times h \)
 - \(F < F_{\text{max}} \) of the crane structure
 - \(a = \frac{v^2}{2s} < a_{\text{max}} \)

\(W \) = Energy Absorption [J]
\(s \) = Travel [mm]
\(F \) = Force [kN]
\(v \) = Velocity [m/s]
\(m \) = Mass [kg]
\(h \) = Buffer height
\(a \) = deceleration

- Max. deflection = 50%
- Valid for solid-rubber buffers with \(h = 0.8 \times d \)
Energy-Travel Ø 125

Force-Travel Ø 125
Energy-Travel Ø 160

Force-Travel Ø 160
Energy-Travel Ø 250

Suspension travel [%] vs. Energy W [J]

Force-Travel Ø 250

Suspension travel [%] vs. Force F [kN]
Energy-Travel Ø 315

Force-Travel Ø 315
Conductix-Wampfler has just one critical mission: To provide you with energy and data transmission systems that will keep your operations up and running 24/7/365.

To contact your nearest sales office, please refer to: www.conductix.contact